3.322 \(\int \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=167 \[ -\frac{(2 a B+A b) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}+\frac{\sqrt{a-i b} (B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{\sqrt{a+i b} (-B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}-\frac{A \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d} \]

[Out]

-(((A*b + 2*a*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d)) + (Sqrt[a - I*b]*(I*A + B)*ArcTanh[Sq
rt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d - (Sqrt[a + I*b]*(I*A - B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a +
I*b]])/d - (A*Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.51638, antiderivative size = 167, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 7, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.212, Rules used = {3608, 3653, 3539, 3537, 63, 208, 3634} \[ -\frac{(2 a B+A b) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}+\frac{\sqrt{a-i b} (B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{\sqrt{a+i b} (-B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}-\frac{A \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

-(((A*b + 2*a*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d)) + (Sqrt[a - I*b]*(I*A + B)*ArcTanh[Sq
rt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d - (Sqrt[a + I*b]*(I*A - B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a +
I*b]])/d - (A*Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]])/d

Rule 3608

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n)/(
f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(b*(m + 1)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f
*x])^(n - 1)*Simp[b*B*(b*c*(m + 1) + a*d*n) + A*b*(a*c*(m + 1) - b*d*n) - b*(A*(b*c - a*d) - B*(a*c + b*d))*(m
 + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B},
 x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && (IntegerQ[
m] || IntegersQ[2*m, 2*n])

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin{align*} \int \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx &=-\frac{A \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}-\int \frac{\cot (c+d x) \left (\frac{1}{2} (-A b-2 a B)+(a A-b B) \tan (c+d x)+\frac{1}{2} A b \tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=-\frac{A \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}-\frac{1}{2} (-A b-2 a B) \int \frac{\cot (c+d x) \left (1+\tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx-\int \frac{a A-b B+(A b+a B) \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=-\frac{A \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}-\frac{1}{2} ((a-i b) (A-i B)) \int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx-\frac{1}{2} ((a+i b) (A+i B)) \int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx+\frac{(A b+2 a B) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}\\ &=-\frac{A \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}-\frac{(i (a-i b) (A-i B)) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}+\frac{((i a-b) (A+i B)) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}+\frac{(A b+2 a B) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac{(A b+2 a B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}-\frac{A \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}+\frac{((a-i b) (A-i B)) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}+\frac{((a+i b) (A+i B)) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac{(A b+2 a B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}+\frac{\sqrt{a-i b} (i A+B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{\sqrt{a+i b} (i A-B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}-\frac{A \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 2.33061, size = 235, normalized size = 1.41 \[ \frac{\frac{\frac{\left (A \left (a \sqrt{-b^2}+b^2\right )+b B \left (a-\sqrt{-b^2}\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{-b^2}}}\right )}{\sqrt{a-\sqrt{-b^2}}}+\frac{\left (A \left (b^2-a \sqrt{-b^2}\right )+b B \left (a+\sqrt{-b^2}\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+\sqrt{-b^2}}}\right )}{\sqrt{a+\sqrt{-b^2}}}-A b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{b}-\frac{(2 a B+A b) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a}}}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

(-(((A*b + 2*a*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/Sqrt[a]) + (((A*(b^2 + a*Sqrt[-b^2]) + b*(a - Sqr
t[-b^2])*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - Sqrt[-b^2]]])/Sqrt[a - Sqrt[-b^2]] + ((A*(b^2 - a*Sqrt[-
b^2]) + b*(a + Sqrt[-b^2])*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + Sqrt[-b^2]]])/Sqrt[a + Sqrt[-b^2]] - A
*b*Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]])/b)/d

________________________________________________________________________________________

Maple [C]  time = 1.578, size = 50548, normalized size = 302.7 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (A + B \tan{\left (c + d x \right )}\right ) \sqrt{a + b \tan{\left (c + d x \right )}} \cot ^{2}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2*(a+b*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*sqrt(a + b*tan(c + d*x))*cot(c + d*x)**2, x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out